• 发帖
  • 人格培育幼教新闻 幼教课堂幼儿园
  • 教案课件素材资源 素质培养幼小衔接
  • 学前院校理念师德 专业知识专业能力
  • 培训辅导求职招聘 赛事活动会员vip
  • 育儿百科成长档案 交流区宝宝商城
  • 打印 上一主题 下一主题

    数学知识:连续数之迷

    [复制链接]
    跳转到指定楼层
    楼主
    发表于 2018-11-8 11:46:27 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
            (注:文中继将阿拉零记为alf(0),阿拉夫一记为alf(1),依次类推)
    由于alf(0)是无穷基数,阿拉夫是有异于有限运算的神奇运算,因而,以下的结果也不足为怪: 
    alf(0)+ 1 = alf(0) alf(0) + n = alf(0) alf(0) + alf(0) = alf(0) alf(0) X n = alf(0) alf(0) X alf(0) = alf(0) 
    alf(0)是自然数集的基数。一个无穷基数,只要是可数集,其基数必为alf(0)。由可排序性,可知如整数集、有理数集的基数为alf(0);或由它们的基数为alf(0),得它们为可数集。而实数集不可数(可由康托粉尘线反证不可数)推之存在比alf(0)更大的基数。乘法运算无法突破alf(0),但幂集可突破:2alf(0) = alf(1) 可以证明实数集的基数card(R) = alf(1)。进而,阿拉夫“家族”一发而不可收:2alf(1) = alf(2);2alf(2) = alf(3);…… alf(2)究竟有何意义?人们冥思苦想,得出:空间所有曲线的数目。但而后的alf(3),人类绞尽脑汁,至今为能道出眉目来。此外,还有一个令人困惑的连续统之迷:“alf(0)与alf(1)之间是否还存在另一个基数?”
    公元1878年,康托提出了这样的猜想:在alf(0)与alf(1)之间不存在其它的基数。但当时康托本人对此无法予以证实。
    公元1900年,在巴黎召开的第二次国际数学家会议上,德国哥庭根大学教授希尔伯特提出了举世闻名的23个二十世纪须攻克的数学问题中,连续统假设显赫的排在第一个。然而这个问题的最终结果却是完全出人意料的。
    公元1938年,奥地利数学家哥德尔证明了“连续统假设决不会引出矛盾”,意味着人类根本不可能找出连续统假设有什么错误。1963年,美国数学家柯亨居然证明了:“连续统假设是独立的”,也就是说连续统假设根本不可能被证明。



              关键词:数学知识连续数
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    

    QQ|小黑屋|手机版|Archiver|5678幼师网  长春伍陆柒捌集团版权所有

    GMT+8, 2024-11-19 15:44 , Processed in 0.039806 second(s), 24 queries .

    伍陆柒捌幼师网 Licensed

    © 2001-2014   版权所有:伍陆柒捌集团 吉林省关心下一代教育协会

    快速回复 返回顶部 返回列表
    找回密码 注册本站